Preliminary communication

A variable temperature NMR study of carbonyldiphenylacetylene $tris(\pi$ -cyclopentadienylrhodium) and its bis(pentafluorophenyl) derivative

T. YAMAMOTO. A.R. GARBER, G.M. BODNER, and L.J. TODD

Department of Chemistry*, Indiana University, Bloomington, Indiana 47401 (U.S.A.)

M.D. RAUSCH and S.A. GARDNER

Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, 01002 (U.S.A.) (Received May 7th, 1973)

SUMMARY

The temperature-dependent 1H and ^{13}C NMR spectra of $(h^5 \cdot C_5H_5)_3Rh_3$ (CO)C₆H₅C \equiv CC₆H₅ support the view that this molecule is fluxional in solution at room temperature but is in a frozen conformation at -88° ; NMR data of $(h^5 \cdot C_5H_5)_3Rh_3$ (CO) C₆F₅C \equiv CC₆F₅ indicate that this molecule appears to be static at room temperature and fluxional at elevated temperatures. The NMR data are consistent with structures, which have been determined by X-ray methods.

It has been known for some time that some polynuclear metal carbonyl complexes are fluxional in solution, e.g., $[(h^5 \cdot C_5H_5)Fe(CO)_2]_2^1$, $Rh_4(CO)_{12}^2$ and $(h^5 \cdot C_5H_5)_2 \cdot Rh_2(CO)_3^3$. We have studied the PMR and C NMR spectra of $(h^5 \cdot C_5H_5)_3Rh_3(CO)$ $C_6H_5C \equiv CC_6H_5(I)^{4,5}$ and $(h^5 \cdot C_5H_5)_3Rh_3(CO)$ $C_6F_5C \equiv CC_6F_5(II)^{5,6}$ and the results of these studies are reported here

^{*}Contribution No. 2197.

The C NMR spectra were obtained with a Varian XL-100-15 spectrometer operating in the pulsed Fourier Transform mode at 25.1 MHz or with a Fourier transform pulsed NMR spectrometer operating at 15.08 MHz as described previously⁷. The proton NMR spectra were measured with a Varian HA-100 spectrometer. The ¹³C chemical shifts were measured relative to an internal solvent reference and then reported relative to a tetramethylsilane (TMS) standard. The chemical shift conversion factors used in this study are δ (TMS) = δ (CH₂Cl₂) + 53.89 ppm and δ (TMS) = δ (CS₂) + 192.44 ppm. TMS was used as the standard for the proton NMR spectra as well. Tris(acetylacetonato) chromium(III) (0.03 to 0.1M) was added to C NMR samples to reduce t_1 relaxation times⁸. The infrared spectra were measured using a Perkin-Elmer model 137 or 137G spectrometer.

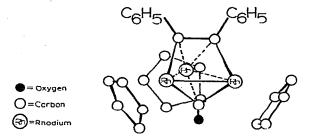


Fig. 1. The structure of (h⁵-C₅H₅) ₃Rh₃ (CO) C₆H₅C≡CC₆H₅ Obtained from X-ray crystal study.

The room temperature PMR spectrum (CD_2Cl_2 solvent) of $(h^5-C_5H_5)$ $_3Rh_3$ (CO) $C_6H_5C\cong CC_6H_5$ (I) consisted of a complex multiplet centered at about 7.1 ppm due to the phenyl groups and a singlet at 5.32 ppm due to the pentahapto-cyclopentadienyl groups. When the solution was cooled to -88° , two singlets appeared in the cyclopentadienyl region of the spectrum at 5.53 and 5.32 ppm with the intensity ratio 1/2, respectively. A single crystal X-ray diffraction study of I has yielded the structure shown in Fig. 1 9. The solid state structure indicates that there are two stereochemically nonequivalent types of cyclopentadienyl groups in the molecule. This information suggests that at room temperature I is fluxional in solution but is in a static conformation at -88° .

TABLE 1

13C NMR DATA OF (h5-C5H5) 3Rh3 (CO) C6H5C≡CC6H5

Chemical shift (ppm) ^{a,b,c}	$J(^{103}Rh-^{13}C)'(Hz)$	Chemical shift ^b ,d	J(103Rh-13C)'(Hz)	Assignment
236.0	38.7 (quartet)	241.6	43.7 (triplet) 28.4 (doublet)	СО
128.6		128.3		phenyl group
126.8		weak signal		phenyl group
125.1		weak signal		phenyl
89.7		89.7		group h ⁵ -C ₅ H ₅

a_{TMS 0 ppm}. b_{90%} CH₂Cl₂, 10% Freon-11. c_{Room temperature}. d_{-90°}C.

When we measured the C NMR spectrum of I with natural abundance ¹³C, even in the presence of 0.1M Cr(Acac)₃, we could not locate a signal attributable to the carbonyl carbon. A tetrahydrofuran solution of I was therefore stirred at room temperature under 90% ¹³C-enriched carbon monoxide (450 mm pressure) for 19 h. This gave I with its carbonyl ligand 77% labelled as measured by the relative absorbances of the ¹²CO band at 1847 cm⁻¹ and the ¹³CO band at 1808 cm⁻¹. The C NMR spectral data of ¹³C-enriched I is given in Table 1. In the room temperature C NMR spectrum of I, the carbonyl resonance appears as a quartet. This result suggests that at room temperature

the carbonyl group is either (a) in symmetrical triple-bridging position and the tolane ligand is interchanging or (b) both the carbonyl and the tolane ligands are fluxional. At -90° the C NMR data suggest that the carbonyl group is in a static unsymmetrical triple-bridging position. The carbonyl carbon is more strongly coupled to two of the rhodium nuclei (triplet; $J(^{103}Rh-^{13}C)$ 43.7 Hz) and less strongly coupled to the third rhodium nucleus (doublets; $J(^{103}Rh-^{13}C)$ 28.4 Hz). These results are consistent with the unsymmetrical triple-bridging configuration of the carbonyl group found in the X-ray structure study of I (Fig. 1). The cyclopentadienyl and phenyl carbon atoms of I (measured at room temperature) have normal chemical shift values generally observed for these types of groups. A ^{13}C resonance for the acetylene carbon atoms of I was not located with certainty.

In contrast, the room temperature PMR spectrum (CDCl₃ solvent) of the related complex, $(h^5\text{-}C_5H_5)_3\text{Rh}_3$ (CO) $C_6F_5C \equiv CC_6F_5$ (II) contained two singlet resonances, which can only be attributed to the cyclopentadienyl protons, at 5.46 and 5.20 ppm with the intensity ratio of 1/2 respectively. This suggests that this molecule is static at room temperature.

Introduction of ¹³C-enriched carbon monoxide into II required much more forcing conditions than for I. Heating a dioxane solution of II at 95° for 12 h under ¹³C-enriched carbon monoxide gave II which was 50% labelled. The C NMR spectral data (CH₂Cl₂ solvent) of II are given in Table 2. The carbonyl carbon resonance is a triplet,

TABLE 2

13C NMR DATA OF $(h^5-C_5H_5)$ 3Rh3 (CO) $C_6F_5C=CC_6F_5$

Chemical shift ^{a,b} (ppm)	$J(^{103}Rh-^{13}C)'(Hz)$	Assignment
217.8	48.5 (triplet)	CO h ⁵ -C ₅ H ₅
89.0 (relative area two) 84.9 (relative area one)		h^5 -C ₅ H ₅

^aCH₂Cl₂ solvent. ^b Room temperature.

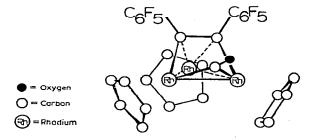


Fig. 2. The structure of (h⁵-C₅H₅) ₃Rh₃ (CO) C₆F₅C≡CC₆F₅ Obtained from X-ray crystal study.

suggesting that this group is bridging two rhodium atoms. A single crystal X-ray diffraction study of II has yielded the structure illustrated in Fig. 29. The most interesting feature of this structure is the location of the CO function as a bridging group between two rhodium atoms in accord with our C NMR results. Two doublet resonances in a 2/1 ratio were observed for the cyclopentadienyl carbon atoms in the single frequency off resonance decoupled C NMR spectrum of II. This adds further support to the suggestion that II is static at room temperature. The phenyl carbon resonances were not observed due probably to $^{13}C^{-19}F$ coupling which would scatter these signals. A signal for the acetylene carbon atoms of II was not located with certainty.

We have observed with a variety of other metal—carbonyl systems¹⁰ that carbon monoxide exchange occurs more readily with fluxional molecules than with those that are static. We were able to achieve ¹³CO exchange with II only at elevated temperatures. Therefore we examined the PMR and C NMR of II at elevated temperatures. The two cyclopentadienyl resonances observed in the NMR spectra of II at room temperature were found (both in the PMR and C NMR) to collapse to a single resonance at +87°. Further NMR studies of these interesting systems with labelled molecules are in progress.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the support of this research by the National Science Foundation through Grants GP-33267X and GP-20526.

REFERENCES

- 1 J.G. Bullitt, F.A. Cotton and T.J. Marks, J. Amer. Chem. Soc., 92 (1970) 2155.
- 2 F.A. Cotton, L. Kruczynski, B.L. Shapiro and L.F. Johnson, J. Amer. Chem. Soc., 94 (1972) 6191.
- 3 J. Evans, B.F.G. Johnson, J. Lewis and J.R. Norton, J. Chem. Soc., Chem. Commun., (1973) 79.
- 4 S.A. Gardner, P.S. Andrews and M.D. Rausch, in preparation.
- 5 M.D. Rausch, Pure Appl. Chem., 30 (1972) 523.
- 6 M.D. Rausch, P.S. Andrews, S.A. Gardner and A. Siegel, Organometal. Chem. Syn., 1 (1971) 289.
- 7 D. Doddrell and A. Allerhand, Proc. Nat. Acad. Sci., 68 (1971) 1083.
- 8 O.A. Gansow, A.R. Burke and G.N. LaMar, J. Chem. Soc., Chem. Commun., (1972) 456.
- 9 L.F. Dahl, personal communication.
- 10 T. Yamamoto and L.J. Todd, unpublished results.